Lesson Plan:

Davis-Besse Loss of Feedwater

Program: R506P-17

Date: 0487

Aúthor: L. Bell

Reviewed By: Johnger

References:

NUREG-1154 Loss of Main and Auxiliary
 Feedwater Event at the Davis-Besse
 Plant on June 9, 1985

- 2. Ad Hoc Group Report on Davis-Besse, May 1986
- 3. Further NRC Actions on Davis-Besse, Sept. 1985

3.0 Presentation

- 3.1 System Descriptions
 - 3.1.1 Reactor Coolant System
 - 3.1.1.1 Lower Loop Design
 - 3.1.1.2 Pressurizer Higher than Bellefonte Design
 - 3.1.1.3 Pressurizer Safety Valves
 Discharge directly to
 Containment
 - 3.1.1.4 PORV discharges to Quench Tank
 - 3.1.2 Steam and Feedwater Rupture Control
 System
 - 3.1.2.1 Designed to actuate AFW on low OTSG level.
 - 3.1.2.2 Isolates affected OTSG on low pressure.
 - 3.1.2.3 Isolates affected OTSG on feedline rupture.
 - (a) delta P across feed header check valve measured.
 - (b) feed pressure 177 psig >
 SG press → leak
 - 3.1.3 Feedwater System
 - 3.1.3.1 Deareator Feed Tanks
 - (a) storage & deareation of feedwater
 - (b) receives discharge of hotwell pumps

- 3.1.3.2 Booster and Main Feed Pumps
 - (a) booster pump takes a suction on deareator discharges to feed pump
 - (b) main feed pump ICS
 speed controlled turbine also drives
 booster pump
- 3.1.3.3 Main Reg/Startup Valve/MFIV
 - (a) main reg & startup valveICS controlled
 - (b) main reg & startup valve closed by SFRCS signal
 - (c) MFIV closed by SFRCS signal
- 3.1.3.4 Startup Feedwater Pump
 - (a) used to supply feedwater to OTSGs during early phases of startup
 - (b) SUFP discharge piping not seismic but passes thru AFW pump rooms
 - (c) pump isolated at power to prevent line break from affecting AFW pumps
 - pump suction closed
 - pump discharge closed
 - cooling inlet & outlet closed
 - breaker fuses pulled
 - (d) non-vital powered

3.1.4 Main Steam

- 3.1.4.1 Safety valves normally lift after reactor trip
 - (a) 177 FA unit has less steam dump capacity
 - (b) history of failures to reset correctly
- 3.1.4.2 Atmospheric Vents
 - (a) ICS controlled
 - (b) control header pressure if condenser is not available or MSIVs are closed
 - (c) SFRCS close signal
- 3.1.4.3 Aux Feedwater Pump Turbines
 - (a) redundant 100% turbines
 - (b) started by SFRCS normal or associated supply
 - (c) supply from opposite OTSG opens when low pressure exists in associated OTSG.

3.1.4.4 MSIVs

(a) closed by SFRCS maintains OTSG available to supply AFW pump steam as well as steam break isolation

Lesson Plan (Continued)

3.1.5 AFW System

- 3.1.5.1 Normal Operation
 - (a) #1 pump to #1 OTSG, #2 pump to #2 OTSG
 - (b) low OTSG #1 pressure
 3870 & 608 close
 3871 normally closed
 3869 opens
 both feedpumps supply #2
- 3.1.6 ECCS Systems
 - 3.1.6.1 MU&P not an ECCS system

OTSG

- 3.1.6.2 HPI pumps relatively low head (~1600 psig)
- 3.1.6.3 LPI pumps ~ 200 psig discharge
- 3.1.6.4 Piggy Back increase HPI pressure to ~ 1800 psig

3.2 Sequence of Events

- 3.2.1 Initial Conditions
 - 3.2.1.1 90% power
 - (a) RCS flow transmitters replaced in Dec'84 refueling - noise - close to ₹/Δ₹/flow trip at 100% power
 - 3.2.1.2 Main Feedpumps
 - (a) several overspeed trips of pumps (6/2/85)
 - (b) both instrumented manual should prevent loss of both if control system problem.

Lesson Plan (Continued)

- 3.2.1.3 Source Range Inoperable
 - (a) indication at power even with hi voltage deenergized
 - (b) problems since startup
 (1976)
- 3.2.1.4 SPDS
 - (a) could have been used during transient
- 3.2.2 Transient
 - 3.2.2.1 See attached sequence of events